Extension of RTKLIB for the calculation and validation of protection levels

Bence TAKÁCS^{1,2}, Zoltán SIKI^{1,2}, Rita MARKOVITS-SOMOGYI³

¹Budapest University of Technology and Economics, Department of Geodesy and Surveying

²GeoForAll Lab at Budapest

³Hungarocontrol, Hungarian Air Navigation Service Provider

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőmérnöki Kar - építőmérnöki képzés 1782 óta

Általános és Felsőgeodézia Tanszék

Paris, Marne-La-Vallée, 20th July 2017

Content

• Why?

Plans to introduce GPS based flight procedures in Hungary

- Compare RTKLIB to proprietary
 programs
- Application: flight validation at Debrecen airport

Rationale

Accuracy

EGNOS monitor station at BME www.agt.bme.hu/egnos

Integrity protection cylinder

Vertical and Horizontal Alert Limit cylinder are defined by the phase of flight

Source: http://www.gps.gov/technical/ps/2008-WAAS-performance-standard.pdf

Protection level (PL) calculation

$$\sigma_{i}^{2} = \sigma_{i,flt}^{2} + \sigma_{i,iono}^{2} + \sigma_{i,air}^{2} + \sigma_{i,tropo}^{2} \quad \text{variance of } i^{\text{th}} \text{ satellite has 4 components}$$

$$\mathbf{W}^{-1} = \begin{bmatrix} \sigma_{1}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{2}^{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_{n}^{2} \end{bmatrix} \quad \mathbf{G}_{i}^{T} = \begin{bmatrix} \cos(El_{i}) \cdot \cos(Az_{i}) \\ \cos(El_{i}) \cdot \sin(Az_{i}) \\ \sin(El_{i}) \\ 1 \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} d_{east}^{2} & d_{EN} & d_{EU} & d_{ET} \\ d_{EN} & d_{north}^{2} & d_{NU} & d_{NT} \\ d_{EU} & d_{NU} & d_{U}^{2} & d_{UT} \\ d_{ET} & d_{NT} & d_{UT} & d_{U}^{2} \end{bmatrix} = (\mathbf{G}^{T} \mathbf{W} \mathbf{G})^{-1}$$
nverse of the weight matrix Geometry matrix Variance/covariance matrix

$$d_{major} = \sqrt{\frac{d_{east}^{2} + d_{north}^{2}}{2} + \sqrt{\frac{d_{east}^{2} - d_{north}^{2}}{2} + d_{EN}^{2}}}$$

 $K_H = 6.00$ Factor bounding users horizontal / vertical position $K_V = 5.33$ with a probability of 10^{-9} / 0.5×10^{-7} $HPL = K_H \cdot d_{major}$ Horizontal and vertical protection level

Source: RTCA MOPS DO-229-C "Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System airborne equipment"

Variance includes

$$\sigma_i^2 = \sigma_{i,flt}^2 + \sigma_{i,iono}^2 + \sigma_{i,air}^2 + \sigma_{i,tropo}^2$$

Variance includes

 $\sigma_i^2 = \sigma_{i,flt}^2 + \sigma_{i,iono}^2 + \sigma_{i,air}^2 + \sigma_{i,tropo}^2$

- Fast and long term correction
- Ionospheric delay
- Tropospheric delay
- Airborne error

Software to calculate PL

• Eurocontrol: Pegasus

• GMV: magicGemini

14

Open source solution: RTKLIB

- RTKLIB
 - SBAS positioning mode
 - no PL calculation
- Houghton Assoc Inc. fork of RTKLIB
 - PL calculation available
- Our enhanced version
 - https://github.com/zsiki/RTKLIB/ tree/rtklib_2.4.3

PL calculated by different programs

What is Cat. I – II – III?

17

PL calculated by different programs

Data processing scheme ntection level, rtklik **GPS+SBAS** raw data rnx2rtkp PEGASUS QGIS magicGemini GNUplot (RTKLIB) output pos and range trace output text files output files messages sql scripts gawk scripts CSV files in psql

1st reason: Some of the measurements are filtered out

2nd reason: Differences of variances

	magicGemini vs. RTKLIB	Pegasus vs. RTKLIB
differences of fast and long term correction variance [m]		
minimum	-2.14	+0.04
maximum	+2.42	+0.29
mean	+0.09	+0.13
std. dev.	±0.04	±0.04
differences of airborne variance [m]		
minimum	-0.18	0.00
maximum	0.00	0.00
mean	-0.15	0.00
std. dev.	±0.04	0.00
differences of ionospheric delay variance [m]		
minimum	-26.23	-26.23
maximum	+10.47	+0.22
mean	-0.02	-0.02
std. dev.	±0.41	±0.38

Airborne variance

Largest component: lonosphere

Ionosphere grid models

EGNOS ionosphere GIVEi map at 21/02/2017 13:59:59

EGNOS ionosphere map at 21/02/2017 13:59:59

IPP positions

all measurements during a 24 hour session at Budapest

IPP positions

Large ionosphere variance differences! (RTKLIB vs. mGemini)

Range and Integrity Monitor Stations (RIMS)

Flight validation at Debrecen airport

PL during flight validation

GPS Time

29

To sum it up

- Open source SW compared to proprietary https://github.com/zsiki/RTKLIB/tree/rtklib_2.4.3
- Protection levels
- Reason behind the differences

what for?...

