Solution of Nonlinear Equations with Uncertain Parameters

Talk Outline

- Toy example
- Transformation of a PDF
- Homotopy
- How to solve nonlinear equation via homotopy
- Stochastic differential equation
- Ito process
- Positioning by Geodetic Resection
- Non Gaussian Noise
- Promotion

Toy example

Let us consider the following polynomial, where δ is a Gaussian noise with $\delta=\mathcal{N}(0$, σ)
$10(0)=\mathrm{q}=\mathrm{x}^{2}+(8+\delta) \mathrm{x}-9$;
Its algebraic solution
$\ln [\cdot]:=$ sol = Solve $[\mathbf{q}=\mathbf{0}, \mathrm{x}]$
Out [0] $=$
$\left\{\left\{x \rightarrow \frac{1}{2}\left(-8-\delta-\sqrt{100+16 \delta+\delta^{2}}\right)\right\},\left\{x \rightarrow \frac{1}{2}\left(-8-\delta+\sqrt{100+16 \delta+\delta^{2}}\right)\right\}\right\}$
Let us consider the second solution
$\ln [\cdot]:=\mathbf{s}=\mathbf{x} /$. First[sol[2】]
Out [0] =
$\frac{1}{2}\left(-8-\delta+\sqrt{100+16 \delta+\delta^{2}}\right)$
To get the distribution of s we transform of the distribution of δ. Let
$\ln [-]:=\sigma=\mathbf{1} ;$
$\operatorname{In}[\varepsilon]:=\mathcal{D}=\operatorname{Tr}$ ansformedDistribution [s, $\delta \approx \operatorname{NormalDistribution[0,~} \sigma$]];
The PDF of \mathcal{D}
In[$]$: $=$ p0 = Plot $[\operatorname{PDF}[\mathcal{D}, \xi] / /$ Evaluate, \{ $, ~ 0.7,1.37\}$, Frame \rightarrow True, PlotLegends \rightarrow \{"algebraic"\}]
Out[-] $=$

The PDF of the second solution
The mean value
$\ln [0]:=\mu_{2}=\int_{-\infty}^{\infty} \xi \operatorname{PDF}[\mathcal{D}, \xi] \mathrm{d} \xi / / \mathrm{N}$
Out[0]=
1.00915

The standard deviation
$\ln [\cdot]:=\sigma_{2}=\sqrt{\int_{-\infty}^{\infty}\left(\xi-\mu_{2}\right)^{2} \operatorname{PDF}[\mathcal{D}, \xi] \mathrm{d} \xi} / / \mathrm{N}$
Out[0] $=$
0.103058

Is the result Gaussian too, $\mathcal{N}\left(\mu_{2}, \sigma_{2}\right)$?
Let us generate random samples
$\ln [\circ]:=$ data $=$ RandomVariate [D, 10000];
and find a fitted distribution
In[ə]:= FindDistribution [data, TargetFunctions \rightarrow \{NormalDistribution\}]
Out[o]=
NormalDistribution [1.01011, 0.103581]

Transformation of a PDF

What does the function TransformedDistribution[] do?

Illustration

Assuming that our density function as

$$
f_{X}(\xi)=e^{-\xi}
$$

Let consider the following transform

$$
Y=\sqrt{X} \text { or in general } Y=\phi(\mathrm{X})
$$

the inverse transform is

$$
\mathrm{X}=Y^{2} \text { or } \mathrm{X}=\phi^{-1}(\mathrm{Y})
$$

where $\phi^{-1}()=.(.)^{2}$
then the transformed PDF can be computed as

$$
f_{Y}(\xi)=f_{X}\left(\phi^{-1}(\xi)\right)\left|\frac{d \phi^{-1}(\xi)}{d \xi}\right|=e^{-\xi^{2}}|2 \xi|
$$

Employing the built-in function

```
    In[f]:= f
out[0]=
    {l}\mp@subsup{\mp@code{e}}{\mp@subsup{e}{}{-\xi}}{0
    |n[\sigma]:= Y = TransformedDistribution[\sqrt{}{\mathbf{x}},\textrm{X}\approx\mathrm{ ExponentialDistribution[1] ]}]
out[0]=
    WeibullDistribution[2, 1]
    x
```



```
out[0]=
{ll}\begin{array}{ll}{2\mp@subsup{e}{}{-\mp@subsup{\xi}{}{2}}\xi}&{\xi>0}\\{0}&{\mathrm{ True }}
```

Out[0]=

The original PDF (red) and its transformed form (green)

Homotopy

Concept of homotopy

The continuous deformation of an object to an other object is known as homotopy.
Let us consider a simple geometric example. Define the homotopy between a circle and a square.

$$
\begin{aligned}
& \mathrm{x}=\mathrm{R} \cos (\alpha) \\
& \mathrm{y}=\mathrm{R} \sin (\alpha)
\end{aligned}
$$

$\ln [1]:=$
$\ln [2]:=$
$\ln [3]:=$
ListPlot[circle, Joined \rightarrow True, AspectRatio \rightarrow 1]

while the parametric equations of the square

$$
\begin{aligned}
& \mathrm{x}=\mathrm{f}(\alpha) \mathrm{R} \cos (\alpha) \\
& \mathrm{y}=\mathrm{f}(\alpha) \mathrm{R} \sin (\alpha)
\end{aligned}
$$

where

$$
f(\alpha)=\frac{1}{\max (|\sin (\alpha)|, \mid \cos (\alpha))}
$$

$\ln [4]:=\operatorname{square}=\operatorname{Table}\left[\{\operatorname{Cos}[\alpha], \operatorname{Sin}[\alpha]\} \frac{1}{\operatorname{Max}[\operatorname{Abs}[\operatorname{Sin}[\alpha]], \operatorname{Abs}[\operatorname{Cos}[\alpha]]]},\{\alpha, 0,2 \operatorname{Pi}, 0.02\}\right] ;$
$\operatorname{In}[5]:=$ ListPlot [square, Joined \rightarrow True, AspectRatio \rightarrow 1, ImageSize \rightarrow Small]

Out[5]=

A square
Now the homotopy function

$$
\mathrm{H}(\alpha, \lambda)=\lambda\binom{\mathrm{R} \cos (\alpha)}{\mathrm{R} \sin (\alpha)}+(1-\lambda)\binom{f(\alpha) \mathrm{R} \cos (\alpha)}{f(\alpha) \mathrm{R} \sin (\alpha)}
$$

In[6]:= Manipulate [
ListPlot [λ circle $+(1-\lambda)$ square, Joined \rightarrow True, AspectRatio $\rightarrow 1] / /$ Quiet, $\{\lambda, 0,1\}]$

Deformation of square into circle vice versa

Solving nonlinear equation via homotopy

Target system, we need to solve
$\mathrm{q}\left[\mathrm{x}_{-}\right]:=\mathrm{x}^{2}+8 \mathrm{x}-9$
Start system, easy to solve
$\ln [\rho]:=p\left[x_{-}\right]:=\mathbf{x}^{2}-\mathbf{9}$
The linear homotopy function
$\ln [\cdot]:=H\left[\mathbf{x}_{-}, \lambda_{-}\right]:=(1-\lambda) p[\mathbf{x}]+\lambda q[\mathbf{x}]$
or
$\ln [\varepsilon]:=\mathbf{H}[\mathbf{x}, \lambda] / /$ Expand
out[o]=
$-9+x^{2}+8 x \lambda$

Deformation of the function H from $p(\mathrm{x})$ to $q(\mathrm{x})$ as function of λ

Homotopy continuation method deforms $p(\mathrm{x})=0$, the known roots of the start system, into $q(\mathrm{x})=0$, the roots of the target system.

One can solve $H(\mathrm{x}, \lambda)=0$ for different values of λ. Considering the positive root, $\mathrm{x}=3$
$\ln [\rho]:=X_{0}=3 ; \lambda_{1}=0.2 ; x_{1}=x /$. FindRoot $\left[H\left[x, \lambda_{1}\right]=0,\left\{x, x_{0}\right\}\right]$
Out[0]=
2.30483

Using the result as guess value for the next solution step
$\ln [0]:=\lambda_{2}=0.4 ; x_{2}=x / . \operatorname{FindRoot}\left[H\left[x, \lambda_{2}\right]=0,\left\{x, x_{1}\right\}\right]$
out[o]=
1.8
and so on,
$\ln [-]:=\lambda_{3}=0.6 ; x_{3}=x /$. FindRoot $\left[H\left[x, \lambda_{3}\right]=0,\left\{x, x_{2}\right\}\right]$
Out[0] $=$
1.44187
$\ln [\circ]:=\lambda_{4}=0.8 ; x_{4}=x /$. FindRoot $\left[H\left[x, \lambda_{4}\right]=0,\left\{x, x_{3}\right\}\right]$
Out[0] =
1.18634
$\ln [\circ]:=\lambda_{5}=1 ; X_{5}=x / . \operatorname{FindRoot}\left[H\left[x, \lambda_{5}\right]=0,\left\{x, x_{4}\right\}\right]$
Out [0]=
1.

Let us display the transition of a root of the polynomial $p(\mathrm{x})$ into a root of the polyno mial $q(\mathrm{x})$,

The transition of the root from $x=3$ to $x=1$ during the deformation of the function H The homotopy path is the function $x=x(\lambda)$, where in every point $H(x, \lambda)=0$.
See figure below shows the path of homotopy transition of the root of $p(\mathrm{x})$ into the root of $q(\mathrm{x})$.
Out[0]=

The homotopy path is the function $x=x(\lambda)$, where in every point of $H=0$.

Tracing homotopy path as initial value problem

However, one can consider this root tracing procedure as an initial value problem of an ordinary differential equation. Since $H(x, \lambda)=0$ for every $\lambda \in[0,1]$, therefore

$$
\mathrm{d} H(x, \lambda)=\frac{\partial H}{\partial x} \mathrm{~d} x+\frac{\partial H}{\partial \lambda} \mathrm{~d} \lambda \equiv 0 \quad \lambda \in[0,1]
$$

Then the initial value problem is

$$
H_{\mathrm{x}} \frac{\mathrm{~d} x(\lambda)}{\mathrm{d} \lambda}+H_{\lambda}=0
$$

with

$$
x(0)=\mathrm{x}_{0}
$$

In case of n variables H_{x} is the Jacobian of H respect to $x_{\mathrm{i}}, i=1, \ldots, n$.
In our single variable case, the two partial derivatives of the homotopy function are
$\ln [0]=\mathrm{dHd} \lambda=\mathrm{D}[\mathrm{H}[\mathrm{x}, \lambda], \lambda]$
out[0]=
8 x
$\ln [\cdot]=\mathrm{dHdx}=\mathrm{D}[\mathrm{H}[\mathrm{x}, \lambda], \mathrm{x}]$
out $[0]=$
$2 x(1-\lambda)+(8+2 x) \lambda$
Then the right hand side of the differential equation to be solved is
$\ln [\rho]:=$ deqrhs $=-\frac{d H d \lambda}{d H d x} / . x \rightarrow x[\lambda]$
out $[0=$

$$
-\frac{8 \times[\lambda]}{2(1-\lambda) \times[\lambda]+\lambda(8+2 \times[\lambda])}
$$

The differential equation,
$\ln [0]=\operatorname{deq}=\mathrm{D}[\mathrm{x}[\lambda], \lambda]=$ deqrhs
out $[0]=$
$x^{\prime}[\lambda]=-\frac{8 x[\lambda]}{2(1-\lambda) x[\lambda]+\lambda(8+2 x[\lambda])}$
The initial value is
$\ln [0]=\mathbf{x} \mathbf{=}=\mathbf{3}$
Out $[0]=$
3
The numerical solution
$\operatorname{In}[\cdot]=$ sol $=\operatorname{NDSolve}[\{d e q, x[0]=x \theta\},\{x[\lambda]\},\{\lambda, 0,1\}] ;$
The trajectory is the homotopy path,

The trajectory of the solution as the homotopy path
The value of the corresponding root of $q(\mathrm{x})$ is $x(\lambda)$ at $\lambda=1$,

```
In[v]:= First[x[\lambda] /. sol /. \lambda }\boldsymbol{~}\mathbf{1]
```

Out[0]=
1.

Stochastic form of the homotopy differential equation

The target system,
$\ln [-]:=\mathbf{q}=\mathbf{x}^{2}+(8+\delta) \mathbf{x}-9$;
The start system,
$\ln [0]=\mathrm{p}=\mathbf{x}^{2}-\mathbf{9}$;
The linear homotopy function is
$\ln [\cdot]:=\mathbf{H}=(\mathbf{1}-\boldsymbol{\lambda}) \mathbf{p}+\boldsymbol{\lambda} \mathbf{q}$;
To get the differential equation form, we compute the partial derivates of the homotopy function,

```
In[v]:= dHx = D[H,x]
```

Out[0] $=$
$2 x(1-\lambda)+(8+2 x+\delta) \lambda$
and
$\ln [0]:=\mathrm{dH} \boldsymbol{\lambda}=\mathrm{D}[\mathrm{H}, \boldsymbol{\lambda}]$
Out [-] $=$
$x(8+\delta)$
Then the right hand side of differential equation is

$$
\ln [0]=\mathrm{d}=-\frac{\mathrm{dH} \lambda}{\mathrm{dHx}}
$$

Out[0] $=$

$$
-\frac{x(8+\delta)}{2 x(1-\lambda)+(8+2 x+\delta) \lambda}
$$

Stochastic form of the homotopy differential equation

Now we should linearized this equation in δ at $\delta=0$, in order to get Ito process form of the stochastic differential equation,
$\ln [\cdot]:=\operatorname{diff}=($ Series $[\mathrm{d},\{\delta, 0,1\}] / /$ Normal $) /. \mathrm{x} \rightarrow \mathrm{x}[\boldsymbol{\lambda}]$
Out [0] =

$$
-\frac{\delta x[\lambda]^{2}}{2(4 \lambda+x[\lambda])^{2}}-\frac{4 x[\lambda]}{4 \lambda+x[\lambda]}
$$

The coefficient of δ
$\ln [\cdot]:=$ pw $=$ Coefficient [diff[〔1,$\delta]$
Out[o]=

$$
-\frac{x[\lambda]^{2}}{2(4 \lambda+x[\lambda])^{2}}
$$

The independent part on δ
$\ln [\cdot]:=\mathrm{p} \boldsymbol{\lambda}=\operatorname{diff} \llbracket 2 \rrbracket$
Out $[0]=$
$-\frac{4 x[\lambda]}{4 \lambda+x[\lambda]}$
Then our linearized differential equation is

$$
\frac{\mathrm{d} x(\lambda)}{\mathrm{d} \lambda}=\mathrm{p}_{\lambda}+\mathrm{p}_{\mathrm{w}} \delta
$$

Ito process

The integral form of this equation is

$$
\mathrm{d} x(\lambda)=\int \mathrm{p}_{\lambda} d \lambda+\int \mathrm{p}_{\mathrm{w}} \delta d \lambda
$$

Since the Gaussian noise is derivative of the Wiener process, namely

$$
\frac{\mathrm{d} W(\lambda)}{\mathrm{d} \lambda}=\delta
$$

Then the Ito process of our stochastic differential equation

$$
\mathrm{d} x(\lambda)=\int \mathrm{p}_{\lambda} d \lambda+\int \mathrm{p}_{\mathrm{w}} d W
$$

Let $\sigma=1$ then
$\ln [\sigma]=\sigma=1 . ;$
then

Out[0] =
ItoProcess $\left[\left\{\left\{\frac{-32 \lambda x[\lambda]-8 x[\lambda]^{2}}{2(4 \lambda+x[\lambda])^{2}}\right\},\left\{\left\{-\frac{0.5 x[\lambda]^{2}}{(4 \lambda+x[\lambda])^{2}}\right\}\right\}, x[\lambda]\right\},\{\{x\},\{3\}\},\{\lambda, 0\}\right]$
Generating 1000 trajectories with step size 0.01
In[o]:= psol = RandomFunction[proc, \{0, 1.0, 0.01\},
1000, Method \rightarrow "StochasticRungeKuttaScalarNoise"]
Out[0] =
TemporalData \mp Time: 0. to 1.
Data points: 101000 Paths: 1000

In[o]:= sd = psol["SliceData", 1];

The generated trajectories and the histogram of the slice distribution at $\lambda=1$
\qquad $\mathrm{p} 1=\operatorname{Plot}[\operatorname{Mean}[\operatorname{psol}[\lambda]],\{\lambda, 0,1\}$,

PlotStyle \rightarrow \{Black, Thin $\},$ FrameLabel $\rightarrow\{" \lambda ", " x(\lambda) "\}$, Frame \rightarrow True];
$\ln [\cdot]:=$ p2 = Plot [$\{$ Mean [psol [$\lambda]$] + StandardDeviation [psol [$\lambda]$],

Mean [psol [λ]] - StandardDeviation [psol [$\lambda]$] \}, $\{\lambda, 0,1\}$, Filling $\rightarrow\{1 \rightarrow\{2\}\}$, PlotStyle \rightarrow \{\{Blue, Thin\}, \{Blue, Thin\} \}, FrameLabel $\rightarrow\{" \lambda ", " x(\lambda) "\}$, Frame \rightarrow True];
$\ln [\cdot]:=\operatorname{Show}[\{\mathbf{p 1}, \mathbf{p} 2\}]$
Out[0]=

The trajectories of the Ito-solution - mean value and the standard deviation

The mean value of the solution is
$\ln [-]:=\mathrm{m}=$ Mean [psol[1]]
out[0]=
1.00192
and the standard deviation
$\ln [\cdot]:=$
s = StandardDeviation [psol [1]]
0.125574

Verification of the type of distribution via simulation
$\ln [=]:=$ data $=$ RandomVariate[psol[1], 10000];
In[$]:=\mathcal{H}=$ DistributionFitTest[data, Automatic, "HypothesisTestData"];

```
ln[0]:=
Show[Histogram[data, Automatic, "ProbabilityDensity"],
Plot[PDF[H["FittedDistribution"], x], {x, 0., 1.57},
    PlotStyle }->\mathrm{ {Green, Thick}, PlotLegends }->\mathrm{ {"stochastic homotopy"}], p0]
```

Out[0] $=$

Positioning by Geodetic Resection

Out[0]=

The Stuttgart Central Test Network

We are looking for the error distribution of the coordinates $(x 0, y 0, z 0)$ of the reference point (K1).
The GPS coordinates $\left(X_{i}, Y_{i}, Z_{i}\right)$ in the global reference frame, $i=1, \ldots, 7$. are in Table

Stations	X (m)	$Y(m)$	$Z(m)$
K1 (reference point)	(4157066.1116)	(671429.6655)	(4774879.3704)
1	4157246.5346	671877.0281	4774581.6314
2	4156749.5977	672711.4554	4774981.5459
3	4156748.6829	671171.9385	4775235.5483
4	4157066.8851	671064.9381	4774865.8238
5	4157266.6181	671099.1577	4774689.8536
6	4157307.5147	671171.7006	4774690.5691
7	4157244.9515	671338.5915	4774699.9070

The GPS coordinates of the stations
In[o]:= Clear["Global`*"]
Then the input data are


```
    x
    x
    x
    x
    x
    x
    };
```

We have in the measured distances s_{i} with error δ. The number of stations is,
m = 7;
Let us assigned the data as,
$X=\operatorname{Table}\left[\left\{\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathrm{i}}, \mathbf{z}_{\mathbf{i}}\right\},\{\mathbf{i}, \mathbf{1}, \mathrm{m}\}\right] / . \operatorname{datan} ;$
$Y=\operatorname{Table}\left[s_{i},\{i, 1, m\}\right] /$ datan
$\{566.864+\delta, 1324.24+\delta, 542.261+\delta, 364.98+\delta, 430.529+\delta, 400.584+\delta, 269.231+\delta\}$
The prototype of the equations based on the implicit distance definition are,

The objective function to be minimized is
obj $=\operatorname{Total}\left[\operatorname{Table}\left[\mathrm{e}^{2},\{\mathbf{i}, \mathbf{1}, \mathrm{~m}\}\right]\right] ;$
The error free solution via global minimization,
$\ln [\sigma]:=$ sol $=$ NMinimize [obj /. datan /. $\delta \rightarrow 0,\{x 0, y 0, z 0\}]$
out [o]=
$\left\{0.00316074,\left\{x 0 \rightarrow 4.15707 \times 10^{6}, y 0 \rightarrow 671430 ., z 0 \rightarrow 4.77488 \times 10^{6}\right\}\right\}$
in[$[\mathrm{j}:=$ NumberForm[sol【2】, 11]
Out[-]//NumberForm=
$\left\{x 0 \rightarrow 4.1570661115 \times 10^{6}, y 0 \rightarrow 671429.66548, z 0 \rightarrow 4.7748793703 \times 10^{6}\right\}$
Now the objective function employing the prototype of the equations based on the explicit distance definition is,
$\ln [\rho]:=$ objr $=\operatorname{Total}\left[\operatorname{Table}\left[\left(\sqrt{\left(x_{i}-x 0\right)^{2}+\left(y_{i}-y 0\right)^{2}+\left(z_{i}-z 0\right)^{2}}-s_{i}\right)^{2},\{i, 1, m\}\right]\right] ;$
The solution is quiet similar,

```
ln[.]:= solr = NMinimize[objr /. datan /. \delta ->0, {x0, y0, z0}]
```

Out $[0]=$
$\left\{2.26362 \times 10^{-9},\left\{x 0 \rightarrow 4.15707 \times 10^{6}, y 0 \rightarrow 671430 ., z 0 \rightarrow 4.77488 \times 10^{6}\right\}\right\}$
In[o]:= NumberForm [solr [[2], 11]
Out[0]//NumberForm=
$\left\{x 0 \rightarrow 4.1570661115 \times 10^{6}, y 0 \rightarrow 671429.66549, z 0 \rightarrow 4.7748793703 \times 10^{6}\right\}$
Consequently we employ the equations based on the implicit definition, since this is a polynomial type of problem and Gröbner basis can be be used for elimination.
To use Groebner basis we need rationalize the data,
$\ln [\circ]:=\operatorname{datanR}=\operatorname{Map}\left[\left(\# \llbracket 1 \rrbracket \rightarrow\right.\right.$ Rationalize$\left.\left[\# \llbracket 2 \rrbracket, 10^{-10}\right]\right) \&$, datan $]$;
Then the system of the polynomial equations representing the necessary condition of the optimum is,

```
In[ь]:= eqs = Map[(D[obj, #] /. datanR // Simplify) &, {x0, y0, z0}];
```


Algebraic solution

Let us find the solution, the probability distribution of the coordinate $x 0$. Eliminating variables $y 0$ and $z 0$ employing reduced Gröbner basis, we get
\{grx0\} = GroebnerBasis [eqs, x0, \{y0, ze\}, MonomialOrder \rightarrow EliminationOrder];
Since the constant term is
$\ln [\circ]:=\mathbf{g r x} \mathbf{0} \mathbb{1}] / / \mathbf{N}$
out[0]=
-2.90517×10^{164}
We normalize the coefficients of this polynomial,

```
grx0n = grx0 / grx0\llbracket1\rrbracket / / N / / Simplify;
```

This polynomial can not be solved symbolically since
$\operatorname{In}[-]:=$ Exponent [grx0n, $\{\mathbf{x} 0, \delta\}]$
out[0]=
$\{7,6\}$
Therefore we employ Taylor expansion at the error free solution of $x 0$.
$\ln [-]:=\mathbf{x} \mathbf{0 P}=\mathbf{x 0} / \mathbf{s o l} \llbracket \mathbf{2} \rrbracket$
out [0] =
4.15707×10^{6}
Second order expansion is used,
In[न]:= grx0nS = Series [grx0n, \{x0, x0P, 2\}] // Normal;
Now let us solve grxens $(x \theta, \delta)=0$ polynomial equation symbolically,
x0 = Solve[grx0nS == 0, x0] // Quiet;
Considering the first solution and neglecting higher order terms of δ than third one, we get
$\ln [\cdot]:=\beta=\operatorname{Series}[\mathbf{x} 0 / . \mathbf{x} \mathbf{0}$ [1],$\{\delta, 0,3\}] / /$ Normal
Out[0]=
$4.15707 \times 10^{6}+0.339286 \delta+3.33517 \times 10^{-7} \delta^{2}+4.90642 \times 10^{-13} \delta^{3}$
Considering the standard deviation of the error of the distant measurement as 1 cm ,
$\ln [0]:=\sigma=\mathbf{0 . 0 1 ;}$
Then the variable $x 0$ as stochastic process is,

```
In[\sigma]:= DXX0 = TransformedDistribution[\beta, \delta \approx NormalDistribution[0, \sigma]]
Out[0]=
```


The mean and the standard deviation are,

```
ln[o]:= mx0 = Mean[DX0]
Out[0]=
    4.15707\times106
    ln[o]:= NumberForm[mx0, 15]
Out[-]//NumberForm=
    4.15706611152965 * 106
    and standard deviation
```



```
Out[0]=
    0.00339286
```

The probability density function can be computed employing random data set generated by the process,

```
In[-]:= datax0 = RandomVariate[Dx0, 10000];
ln[0]:= datax00 = datax0-x0P;
```

Then the displayed density function of x 0 can be seen in figure below

```
In[0]:= \mathcal{H = DistributionFitTest[datax00, Automatic, "HypothesisTestData"];}
In[\sigma]:= p11 = Plot[PDF[H["FittedDistribution"], x], {x, Min[datax00], Max[datax00]},
        PlotStyle }->\mathrm{ {Green, Thick}, PlotLegends }->\mathrm{ Placed[" © algebraic solution", Below]];
```

$\ln [\sigma]:=$ Show[\{Histogram[datax00, Automatic, "ProbabilityDensity"], p11\}, Frame \rightarrow True] out $[0]=$

The probability density function of $x 0$ coordinates as stochastic variables

Stochastic solution

Now we show how to solve the problem via stochastic homotopy. The target system can be the second order system, grxens ($x 0, \delta$). Let us employ now x as independent variable,
$\ln [\cdot]:=\mathbf{q}=\mathbf{g r x} \mathbf{n S}$ /. $\mathbf{x} \boldsymbol{0} \rightarrow \mathbf{x}$;
Now we employ affine homotopy. The homotopy function is

$$
H(\mathrm{x}, \lambda)=(1-\lambda) q^{\prime}\left(\mathrm{x}_{0}\right)\left(\mathrm{x}-\mathrm{x}_{0}\right)+\lambda q(\mathrm{x})
$$

where $x_{0}=\mathrm{x} 0 \mathrm{P}$, see in section of the algebraic solution.
$\ln \left[{ }^{\circ}\right]:=\mathbf{X 0}=\mathbf{x} \mathbf{0} \mathbf{P}$;
The start system is
$\ln [p]:=\mathbf{P}=\mathbf{X}-\mathbf{x} \mathbf{0}$
out[0] $=$
$-4.15707 \times 10^{6}+x$
and derivate at x_{0}
$\ln [\rho]:=\mathbf{d q d x}=\mathbf{D}[\mathbf{q}, \mathbf{x}] / . \mathbf{x} \rightarrow \mathbf{x} \boldsymbol{0}$
Out[0]=
$1.48231 \times 10^{-21}-7.06819 \times 10^{-28} \delta-2.70834 \times 10^{-35} \delta^{2}+$
$2.93084 \times 10^{-4 \theta} \delta^{3}+8.03014 \times 10^{-43} \delta^{4}+2.66134 \times 10^{-46} \delta^{5}-7.31937 \times 10^{-51} \delta^{6}$
Therefore the homotopy function can be written as,

Then we can compute the Ito form,
$\ln [\sigma]:=\mathbf{d H x}=\mathbf{D}[\mathbf{H}, \mathbf{x}]$;
$\ln [\rho]:=\mathrm{dH} \boldsymbol{\lambda}=\mathrm{D}[\mathrm{H}, \lambda]$;
The right hand side,
$\ln [\cdot]:=$ rhs $=-\frac{\mathrm{dH} \lambda}{\mathrm{dHx}} / /$ Simplify;
Now we should linearized this equation in δ at $\delta=0$, in order to get Ito stochastic differential equation form,

Therefore the terms of the Ito form are,

```
ln[-]:= pW = Coefficient[diff[2], \delta]
```

out[0]=

$$
\begin{aligned}
& \left(3.0963 \times 10^{-41}+8.44425 \times 10^{-42} \lambda-\right. \\
& \left.\quad 1.45379 \times 10^{-47} \mathrm{x}[\lambda]-2.0313 \times 10^{-48} \lambda \mathrm{x}[\lambda]+1.74858 \times 10^{-54} \mathrm{x}[\lambda]^{2}\right) / \\
& \left(1.48231 \times 10^{-21}+1.67903 \times 10^{-20} \lambda-4.03897 \times 10^{-27} \lambda \times[\lambda]\right)^{2}
\end{aligned}
$$

and
$\ln [\cdot]:=\mathbf{p} \boldsymbol{\lambda}=\mathbf{d i f f} \llbracket \mathbf{1 \rrbracket}$
out[0]=

$$
\frac{2.01948 \times 10^{-27}\left(-4.15707 \times 10^{6}+x[\lambda]\right)^{2}}{1.48231 \times 10^{-21}+\lambda\left(1.67903 \times 10^{-20}-4.03897 \times 10^{-27} x[\lambda]\right)}
$$

Consequently,

```
    In[\sigma]:= proc = ItoProcess[d| [ [\lambda] == p\lambda dl \lambda + pw d|w[\lambda], x[\lambda], {x, x0}, \lambda,w | WienerProcess[0, \sigma]];
```

Generating 2000 trajectories with step size 0.001 ,
In $[\circ]:=$ psol = RandomFunction[proc, \{0, 1.0, 0.001\},
2000, Method \rightarrow "StochasticRungeKuttaScalarNoise"]
Out[0]=

TemporalData

The mean value of the solution,
in [$]:=$ mxH = Mean [psol[1]]
Out[-] $=$
4.15707×10^{6}
in[o]:= NumberForm[mxH, 11]
Out[-]//NumberForm=
$4.1570661116 \times 10^{6}$
and the standard deviation,
$\ln [0]:=$ sxH = StandardDeviation [psol [1]]
0.0033661

The trajectories of the solution of the Ito differential equation

```
p1 = Plot[Mean[psol[\lambda]]-x0, {\lambda, 0, 1},
    PlotStyle }->\mathrm{ {Red, Thin}, FrameLabel }->{"\lambda", "x(\lambda)"}, Frame -> True]
p2 = Plot[{Mean[psol[\lambda]] + StandardDeviation[psol[\lambda]] - x0,
    Mean[psol[\lambda]]-StandardDeviation[psol[\lambda]]-x0},{\lambda, 0, 1}, Filling }->{1->{2}}
    PlotStyle }->\mathrm{ {{Blue, Thin}, {Blue, Thin}}, FrameLabel }->{"\lambda", "x(\lambda)"}, Frame -> True]
```

 In[\(\cdot]:=\operatorname{Show}[\{\mathbf{p} 2, \mathbf{p 1}\}]\)

The trajectories of the mean and the \pm standard deviation

To find the density function of the distribution let us generate random values,

```
dataH = RandomVariate[psol[1], 10000] - x0;
```

Then we fit a normal distribution,

```
estimated\mathscr{D = FindDistribution[dataH,}
    TargetFunctions }->\mathrm{ {NormalDistribution}, PerformanceGoal }->\mathrm{ "Quality"]
NormalDistribution[-9.82763\times10-6, 0.00347176]
```

Its density function

```
In[\sigma]:= p00 = Plot[PDF[ estimatedD, x], {x, Min[dataH], Max[dataH]},
    PlotStyle }->\mathrm{ {Blue, Thick}, PlotLegends }->\mathrm{ Placed[" © stochastic homotopy", Below]];
```


The density functions resulted by the two different methods

The techniques can be applied to the other two $(y 0, z 0)$ coordinates.

Case of Non - Gaussian Noise

Much more realistic situation, when we measure the parameter and create a histogram of these values which may represents Non-Gaussian Noise!

Generating "Measured Data"

```
ln[\sigma]:= \mathcal{DM = WeibullDistribution [6, 9]}
```

Out[0]=
WeibullDistribution [6, 9]
In[$]$]: data = RandomVariate[DM, 10000];
In[ə]:= Histogram[data, Automatic, "ProbabilityDensity"]
Out[o]=

Approximating the "measured data"

```
    ln[ซ]:= \deltaW = FindDistribution[data, PerformanceGoal -> "Quality"]
Out[0]=
    WeibullDistribution[5.66163, 9.07302]
    ln[o]:= Mean[data]
Out[0]=
    8.32007
    ln[0]:
    StandardDeviation[data]
Out[0]=
1.62266
```


Algebraic Method

Now δ is the parameter distribution
$\ln [0]=\mathbf{q}=\mathbf{x}^{2}+\boldsymbol{\delta} \mathbf{x}-\mathbf{9} ;$
$\ln [\mathrm{f}]=\mathrm{sol}=$ Solve $[\mathbf{q}=\mathbf{0}, \mathrm{x}]$
out $[0]=$ $\left\{\left\{x \rightarrow \frac{1}{2}\left(-\delta-\sqrt{36+\delta^{2}}\right)\right\},\left\{x \rightarrow \frac{1}{2}\left(-\delta+\sqrt{36+\delta^{2}}\right)\right\}\right\}$

Let us consider the second solution

```
ln[f]:= s = x /. First[sol[2\rrbracket]
```

Out[0] =
$\frac{1}{2}\left(-\delta+\sqrt{36+\delta^{2}}\right)$
Then the distribution of this solution using distribution transform,
$\operatorname{In}[\sigma]:=\mathcal{D}=\operatorname{Tr}$ ansformedDistribution [s, $\delta \approx \delta \mathrm{W}]$;
$\ln [\cdot]:=\mathrm{p} 0=\operatorname{Plot}[\operatorname{PDF}[\mathcal{D}, \mathrm{u}],\{\mathrm{u}, \mathbf{0 . 6}, \mathbf{1 . 6}\}$, PlotLegends $\rightarrow\{$ "algebraic" $\}$, Frame \rightarrow True]

It is clear that the result is a non-Gaussian.
$\ln [\cdot]:=$ dataD $=$ RandomVariate [D, 10000];

```
ln[-]:= Df = FindDistribution[data\mathcal{D}
Out[0]=
    ExtremeValueDistribution[0.894464, 0.135274]
ln[o]:= 的植= Mean[Df]
Out[0]=
    0.972547
```



```
Out[o]=
    0.173496
```


Stochastic Homotopy Method

Since the Ito-form generates Gaussian trajectories, let us approximate the "measured data" via Gaussian Mixture!

Out[0] =
MixtureDistribution [\{0.687603, 0.312397\},
\{NormalDistribution[7.81487, 1.72845], NormalDistribution [9.33793, 0.98187] \}]

$\ln [\cdot]:=\mathbf{W} \mathbf{1}=\boldsymbol{\delta} \mathbf{T} \llbracket \mathbf{1}, \mathbf{1} \rrbracket$
Out [0] =
0.687603
$\ln [\circ]:=\mathbf{W} \mathbf{2}=\boldsymbol{\delta} \mathbf{T} \llbracket \mathbf{1}, \mathbf{2} \rrbracket$
Out[0] $=$
0.312397
$\ln [\circ]:=\boldsymbol{\mu} \mathbf{1}=\operatorname{Mean}[\boldsymbol{\delta T}[\mathbf{2}, \mathbf{1}]]$
out[o] $=$
7.81487
$\ln [\circ]:=\boldsymbol{\mu} \mathbf{2}=\operatorname{Mean}[\boldsymbol{\delta T}[\mathbf{2}, \mathbf{2 \rrbracket]}$
Out[o]=
9.33793

The target system,
$\ln [\cdot]:=\mathbf{q}=\mathbf{x}^{2}+(\mathbf{W} 1(\mu 1+\rho 1)+\mathbf{W} 2(\mu 2+\rho 2)) \mathbf{x}-9$;
where $\rho 1=\mathcal{N}(0, \sigma 1)$ and $\rho 2=\mathcal{N}(0, \sigma 2)$
The start system,
$\ln [\sigma]=\mathrm{p}=\mathrm{x}^{2}-\mathbf{9}$;
The linear homotopy function is
$\ln [\rho]:=\mathbf{H}=(\mathbf{1}-\boldsymbol{\lambda}) \mathbf{p}+\boldsymbol{\lambda} \mathbf{q}$;
To get the differential equation form, we compute the partial derivates of the homotopy function,
$\ln [\rho]:=\mathbf{d H x}=\mathbf{D}[\mathbf{H}, \mathbf{x}]$
out[0]=
$2 x(1-\lambda)+\lambda(2 x+0.687603(7.81487+\rho 1)+0.312397(9.33793+\rho 2))$
and
$\ln [\cdot]:=\mathrm{dH} \lambda=\mathrm{D}[\mathrm{H}, \lambda]$
Out[0] =
$x(0.687603(7.81487+\rho 1)+0.312397(9.33793+\rho 2))$
Then the right hand side of differential equation is
$\ln [-]:=\mathrm{d}=-\frac{\mathrm{dH} \lambda}{\mathrm{dHx}}$
Out[o] $=$

$$
-\frac{x(0.687603(7.81487+\rho 1)+0.312397(9.33793+\rho 2))}{2 x(1-\lambda)+\lambda(2 x+0.687603(7.81487+\rho 1)+0.312397(9.33793+\rho 2))}
$$

This is a nonlinear function of $\rho 1$ and $\rho 2$, in order to get a linear form, we use Taylor series at $\rho 1=0$ and $\rho 2=0$

Stochastic form of the homotopy differential equation

$\operatorname{In}[\rho]:=$ Clear [GG, $\mathbf{\rho 1}, \rho \mathbf{2}, \mathbf{x}, \lambda]$
$\operatorname{In}[\cdot]:=\mathbf{G G}\left[\mathbf{u}_{-}, \mathbf{v}_{-}\right]:=\mathbf{d} / .\{\rho \mathbf{1} \rightarrow \mathbf{u}, \rho \mathbf{2} \rightarrow \mathbf{v}\}$
$\ln [\rho]:=\mathrm{GL}=[-]$ TaylorPolynomial $+[\mathrm{GG}[\rho \mathbf{1}, \mathrm{\rho} \mathbf{2}],\{\rho 1, \rho \mathbf{2}\},\{0,0\}, 1]$
Out [0] $=$
$-\frac{4.14533 x}{x+4.14533 \lambda}-\frac{0.343802 x^{2}(1 . \rho 1+0.454327 \rho 2)}{(x+4.14533 \lambda)^{2}}$
Then the coefficient of the Ito differential equation
|n[न]:= pw1 = Coefficient[GL, $\mathbf{~} \mathbf{1}$]
Out[0]=

$$
-\frac{0.343802 x^{2}}{(x+4.14533 \lambda)^{2}}
$$

ln[-]:= pw2 = Coefficient[GL, $\mathbf{~ 2}$]
Out[0] =

$$
\begin{aligned}
& -\frac{0.156198 x^{2}}{(x+4.14533 \lambda)^{2}} \\
\ln [\sigma]:= & p \lambda=G L \llbracket 1 \rrbracket \\
\operatorname{lit}[]= & -\frac{4.14533 x}{x+4.14533 \lambda}
\end{aligned}
$$

out[0]=

Now we have the linearized form of the stochastic differential equation

$$
\frac{\mathrm{d} x(\lambda)}{\mathrm{d} \lambda}=\mathrm{p}_{\lambda}+\mathrm{p}_{\mathrm{w} 1} \rho 1+\mathrm{p}_{\mathrm{w} 2} \rho 2
$$

Ito process

The integral form of this equation is

$$
\mathrm{d} x(\lambda)=\int \mathrm{p}_{\lambda} d \lambda+\int \mathrm{p}_{\mathrm{w} 1} \rho 1 d \lambda+\int \mathrm{p}_{\mathrm{w} 2} \rho 2 d \lambda
$$

Since the Gaussian noise is derivative of the Wiener process, namely

$$
\frac{d W_{i}(\lambda)}{\mathrm{d} \lambda}=\rho \mathrm{i} \mathrm{i}=1,2
$$

Then the Ito process of our stochastic differential equation

$$
\mathrm{d} x(\lambda)=\int \mathrm{p}_{\lambda} d \lambda+\int \mathrm{p}_{\mathrm{w} 1} d W_{1}+\int \mathrm{p}_{\mathrm{w} 2} d W_{2}
$$

then let us assign the values for $\rho 1$ and $\rho 2$
$\ln [\circ]:=\rho \mathbf{1}=$ StandardDeviation[$\mathbf{\delta T} \mathbb{T}, 1]$]
Out[0]=
1.72845
$\ln [\circ]:=\rho \mathbf{2}=$ StandardDeviation[$\mathbf{\delta T} \llbracket 2,2 \rrbracket]$
Out[0] $=$
0.98187
$\ln [\circ]:=\operatorname{proc}=\operatorname{ItoProcess}[\mathbb{d} x[\lambda]==\mathrm{p} \lambda \mathbb{d} \lambda+\operatorname{pw} 1 \mathrm{~d} \| 1[\lambda]+\operatorname{pw} 2 \mathbb{d} \mathbf{w} 2[\lambda], x[\lambda]$, $\{x, 3\}, \lambda,\{w 1 \approx$ WienerProcess [0, $\rho 1]$, w2 \approx WienerProcess [0, $\rho 2]\}]$
out[o] $=$
ItoProcess $\left[\left\{\left\{0 .-\frac{4.14533 x[\lambda]}{4.14533 \lambda+x[\lambda]}\right\}\right.\right.$,

$$
\left.\left.\left\{\left\{0 .-\frac{0.594244 x[\lambda]^{2}}{(4.14533 \lambda+x[\lambda])^{2}}, 0 .-\frac{0.153366 x[\lambda]^{2}}{(4.14533 \lambda+x[\lambda])^{2}}\right\}\right\}, x[\lambda]\right\},\{\{x\},\{3\}\},\{\lambda, 0\}\right]
$$

psol100 = RandomFunction[proc, \{0, 1.0, 0.001\}, 2000, Method \rightarrow "KloedenPlatenSchurz"] Out $[0]=$

TemporalData[+ Time: 0 . to 1.
Data points: 2002000 Paths: 2000

Data not in notebook. Store now $\underset{ }{3}$
$\mathrm{p} 1=\operatorname{Plot}[\operatorname{Mean}[\mathrm{psol100}[\lambda]],\{\lambda, 0,1\}$,
PlotStyle \rightarrow \{Red, Thin $\},$ FrameLabel $\rightarrow\{" \lambda ", ~ " x(\lambda) "\}$, Frame \rightarrow True];

Mean [psol100[$\lambda]$] - StandardDeviation $[\operatorname{psol100[\lambda]]\} ,\{ \lambda ,0,1\} ,Filling~} \rightarrow\{1 \rightarrow\{2\}\}$, PlotStyle \rightarrow \{ \{Blue, Thin\}, \{Blue, Thin \} \}, FrameLabel \rightarrow \{" λ ", "x (λ) "\}, Frame \rightarrow True]; Out $[0]=$

Show [$\{$ p1, p2 \}, AspectRatio \rightarrow 1.2]

The trajectories of the Ito-solution - mean values and the standard deviations

The mean value of the solution is

$$
\begin{gathered}
\ln [0]: \\
\text { out }[0]=
\end{gathered}
$$

0.967721
and the standard deviation
In[$]$:= $\mathbf{s}=$ StandardDeviation [psol100[1]]
Out [o]=
0.153295

The distribution of the solution
\square data100 = RandomVariate[psol100[1], 10000];
In[ə]:= $\mathbf{\delta T 1 0 0 ~ = ~ F i n d D i s t r i b u t i o n ~ [d a t a 1 0 0] ~}$
out[o]=
GammaDistribution [30.8302, 0.0317749]
The PDF of the solutions
$\ln [-]:=$
$\mathrm{p} 1=\operatorname{Plot}[\operatorname{PDF}[\delta T 100, u],\{u, 0.6,1.6\}$,
PlotStyle \rightarrow \{Green, Thick \}, PlotLegends \rightarrow \{"stochastic homotopy"\}];
$\ln [\cdot]:=\operatorname{Show}[\{\mathbf{p} 0, \mathbf{p 1}\}]$
out[0] $=$

Fa-cit

The PDF transform technique provides a more practical and reliable solution!

Promotion

https://www.amazon.de/-/en/Joseph-L-Awange/dp/3030924947

