

MTA SZTAKI Magyar Tudományos Akadémia

Számítástechnikai és Automatizálási Kutatóintézet

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

Építőmérnöki Kar - építőmérnöki képzés 1782 óta

Általános és Felsőgeodézia Tanszék

Multi GNSS-es orientációbecslés alkalmazása pilóta nélküli repülőgép landolási szakaszában

Farkas Márton Rózsa Szabolcs Vanek Bálint

Rédey István Geodéziai Szeminárium 2017. október 12.

Tartalom

- SZTAKI
- ► EKF algoritmus
- Ciklustöbbértelműség feloldásának lépései
- Mérések bemutatása
- Jövőbeli tervek

SZTAKI

- Elődintézménye az Automatizálási Kutatóintézet 1964-ben alakult
- Körülbelül 300 alkalmazott (200 MSc, 70 PhD vagy DSc)
- Alap- (felfedező) kutatási irányok
 - Számítástudomány és -technika
 - Rendszer és -irányításelmélet
 - Gépi érzékelés és interakció
 - Mérnöki és üzleti intelligencia
- Alkalmazott kutatási irányok
 - Járműipar és közlekedés
 - Termelésinformatika és logisztika
 - Energia és fenntartható fejlődés
 - Biztonság és felügyelet
 - Hálózatok, hálózati rendszerek és szolgáltatások, elosztott számítások

Rendszer és Irányításelméleti Kutatólaboratórium

Vezető: Dr. Bokor József

Projektek

- FLEXOP (EU H2020 636307) Flatter mentes repülési tartomány kiterjesztése a repülőgép teljesítmény mutatóinak növelésére
- VISION (EU H2020 690811) Integrált, biztonsági szempontból továbbfejlesztett intelligens repülési szabályozó rendszerek validálása
- RECONFIGURE (EU FP7 314544) Rekonfiguráló szabályozás a repülés közbeni integrált globális meghibásodások kezelésére
- VKSZ Részlegesen automatizált járműplatform biztonsági és gazdaságossági követelményekkel Bosch Magyarország kooperáció – Utasbiztonságot, vezetési asszisztenciát, megbízhatóságot, energiahatékonyságot és környezettudatosságot szolgáló technológiák fejlesztése

Rendszer és Irányításelméleti Kutatólaboratórium

Partnerek

- Airbus Industries
- UTC Aerospace
- USA Haditengerészetének Kutatási Hivatala (ONR)
- University of Minnesota, MN
- Bosch Magyarország Kft.
- Knorr-Bremse Fékrendszerek Kft.
- MVM Paksi Atomerőmű Zrt.

Repülésirányítási és Navigációs Csoport

Rendszer és Irányításelméleti Kutatólaboratórium

Partnerek

- Airbus Industries
- UTC Aerospace
- USA Haditengerészetének Kutatási Hivatala (ONR)
- University of Minnesota, MN
- Bosch Magyarország Kft.
- Knorr-Bremse Fékrendszerek Kft.
- MVM Paksi Atomerőmű Zrt.

Repülésirányítási és Navigációs Csoport

Globális GNSS rendszerek

System	BeiDou	Galileo	GLONASS	GPS
Owner	China	EU	Russia	United States
Coverage	Regional (Global by 2020)	Global	Global	Global
Coding	CDMA	CDMA	FDMA	CDMA
Orbital altitude	21,150 km (13,140 mi)	23,222 km (14,429 mi)	19,130 km (11,890 mi)	20,180 km (12,540 mi)
Period	12.63 h (12 h 38 min)	14.08 h (14 h 5 min)	11.26 h (11 h 16 min)	11.97 h (11 h 58 min)
Number of satelli- tes	5 geostationary or- bit (GEO) satel- lites, 30 medium Earth orbit (MEO) satellites	 18 satellites in orbit, 15 fully ope- ration capable, 11 currently healthy, 30 operational satellites budgeted 	28 (at least 24 by design) inclu- ding: 24 operatio- nal 2 under check by the satellite pri- me contractor 2 in flight tests phase	31 (at least 24 by design)
Frequency	1.561098 GHz (B1) 1.589742 GHz (B1- 2) 1.20714 GHz (B2) 1.26852 GHz (B3)	1.164–1.215 GHz (E5a and E5b) 1.260–1.300 GHz (E6) 1.559–1.592 GHz (E2-L1-E11)	Around 1.602 GHz (SP) Around 1.246 GHz (SP)	1.57542 GHz (L1 signal) 1.2276 GHz (L2 signal)
Status	22 satellites opera- tional, 40 additio- nal satellites 2016- 2020	18 satellites opera- tional 12 additio- nal satellites 2017- 2020	Operational	Operational
Precision	10m (Public) 0.1m (Encrypted)	1m (Public) 0.01m (Encrypted)	4.5m – 7.4m	15m (Without DGPS or WAAS)

Real Time Kinematic

Real Time Kinematic orientációbecslés

Real Time Kinematic orientációbecslés

 Állapotvektor (bázistávolság-vektor, egyszeres különbségben vett ciklustöbbértelműségek), kovarianciamátrix, mérési vektor

$$x = \begin{bmatrix} x_b \\ x_N \end{bmatrix}, \quad P = \begin{bmatrix} P_{bb} & P_{bN} \\ P_{Nb} & P_{NN} \end{bmatrix}, \quad y = \begin{bmatrix} \rho_{DD} \\ \phi_{DD} \\ b_l \end{bmatrix}$$
(2)

Predikciós lépések k-adik epochban

$$x_k^- = F_{k-1}^k x_{k-1}^+ \tag{2}$$

$$P_{k}^{-} = F_{k-1}^{k} P_{k-1}^{+} F_{k-1}^{k}^{T} + Q_{k-1}^{k}$$
(3)

Kalman erősítés

$$K_{k} = P_{k}^{-}H(x_{k}^{-})(H(x_{k}^{-})P_{k}^{-}H(x_{k}^{-})^{T} + R_{k})^{-1}$$
(4)

 Q, R folyamat zaj és mérési zaj kovariancia, F^k_{k-1} állapotátmeneti mátrix a mérés két epocha között

 \blacktriangleright H(x) a Jacobi-mátrix, mely tartalmazza a parciális deriváltakat

$$H(x_k^-) = \begin{bmatrix} \lambda^{-1}DE & 0\\ \lambda^{-1}DE & D\\ \frac{x_b}{\|x_b\|} & 0 \end{bmatrix}$$

(5)

► λ hullámhossz mátrix, D a blokk diagonális kétszeres különbség transzformációs mátrix a konstellációknak megfelelő blokkokkal

$$D = \begin{bmatrix} D_{GPS} & & & \\ & D_{GLO} & & \\ & & D_{GAL} \end{bmatrix}$$
$$D_{cons} = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 \\ -1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & 1 \end{bmatrix}_{m_{cons} - 1 \times m_{cons}}$$

(6)

(7)

(8)

E a műholdak irányvektorait tartalmazó mátrix

$$E = \begin{bmatrix} \frac{X_b - X_1^s}{\|X_b - X_1^s\|} \\ \vdots \\ \frac{X_b - X_m^s}{\|X_b - X_m^s\|} \end{bmatrix}_{m \times 3}$$

Frissítési lépés

$$x_{k}^{+} = x_{k}^{-} + K_{k}(y_{k} - h(x_{k}^{-}))$$

$$P_{k}^{+} = (I - K_{k}H(x_{k}^{-}))P_{k}^{-}.$$
(10)

► Float megoldás: állapotok $\hat{x}_b \ \hat{x}_N$, kovarianciák \hat{P}_{bb} , \hat{P}_{bN} , \hat{P}_{Nb} , \hat{P}_{NN}

Ciklustöbbértelműség feloldása

- A centiméteres pontosság elérésének feltétele
- Kerekítés, sigma-módszer, bootstrapping
- Legelterjedtebb a LAMBDA eljárás
 - Dekorrelációs eljárás a hatékony keresés érdekében

$$oldsymbol{ ilde{x}}_{\mathcal{N}} = rg\min_{x_{\mathcal{N}}\in\mathbb{Z}^m} \|x_{\mathcal{N}}-\hat{x}_{\mathcal{N}}\|^2_{\hat{P}_{\mathcal{N}\mathcal{N}}}$$

(11)

- Az optimalizációba bevisszük az ismert bázistávolságot
- Nemkonvex optimalizációs probléma

$$\breve{x}_{N} = \arg \min_{x_{N} \in \mathbb{Z}^{m}} (C(x_{N}))
C(x_{N}) = ||x_{N} - \hat{x}_{N}||_{\hat{P}_{NN}}^{2} + ||\hat{x}_{b}(x_{N}) - \breve{x}_{b}(x_{N})||_{\hat{P}_{b(N)b(N)}}^{2}$$
(12)

Feltételes bázistávolság és kovarianciamátrix

$$\hat{x}_b(x_N) = \hat{x}_b - \hat{P}_{bN}\hat{P}_{NN}^{-1}(x_N - \hat{x}_N)$$
(13)

$$\hat{P}_{b(N)b(N)} = \hat{P}_{bb} - \hat{P}_{bN}\hat{P}_{NN}^{-1}\hat{P}_{Nb}$$
(14)

Második optimalizáció

$$\check{x}_b(x_N) = \arg \min_{\|x_b\|^2 = b_l^2} \|\hat{x}_b(x_N) - x_b\|_{\hat{P}_{b(N)b(N)}}^2$$
(15)

- Eredeti optimalizációs probléma megoldása számításigényes
- ► A keresési tér alsó és felső korlátfüggvénye

$$C_{1}(x_{N}) = \|x_{N} - \hat{x}_{N}\|_{\hat{P}_{NN}}^{2} + \xi_{min}(\|\hat{x}_{b}(x_{N})\| - b_{l})^{2}$$

$$C_{2}(x_{N}) = \|x_{N} - \hat{x}_{N}\|_{\hat{P}_{NN}}^{2} + \xi_{max}(\|\hat{x}_{b}(x_{N})\| - b_{l})^{2},$$
(16)

ahol

$$\xi_{min} = \min(\operatorname{eig}(\hat{P}_{b(N)b(N)}^{-1}))$$

$$\xi_{max} = \max(\operatorname{eig}(\hat{P}_{b(N)b(N)}^{-1}))$$
(17)

Validációs mérés

Validációs mérés

- Lézeres távolságmérő kalibrációs pontjaira körillesztés → referencia bólintó (θ) és legyező (ψ) szögek
- Mérési frekvencia 1 Hz
- Mérési pontok 100%-ában Fixed megoldás
- Δψ átlag: −0.02° szórás: ±0.23°
 Δθ átlag: 0.02° szórás ±0.19°

UAV mérés

UAV mérés

- Low-cost hardverek
- ▶ Inerciális szenzorok → referencia orsózó (ϕ) és legyező (ψ) szögek
- IMU mérési frekvencia 100 Hz
- GNSS mérési frekvencia 5 Hz
- ► IMU által adott orientációbecslés pontossága $\phi \pm 5^{\circ}$, $\theta \pm 5^{\circ}$, $\psi \pm 10^{\circ}$
- Repülési fázisok
 - Kontrollált landolás
 - Freestyle

Trajektória és műholdszámok

Fázis		$m(\Delta \phi)$	$s(\Delta \phi)$	$m(\Delta\psi)$	$s(\Delta\psi)$	%
Landolás	fixed	-1.37	2.32	1.12	7.34	63.25
	float	-3.31	4.52	-9.19	34.58	5.44
Freestyle	fixed	-0.31	13.63	-0.85	15.99	11.25
	float	-1.76	18.59	-17.58	57.68	20.06
Egvütt	fixed	-1.21	5.71	0.82	9.19	74.5
6,	float	-2.09	16.63	-15.79	53.67	25.5

Összefoglalás

- EKF RTK algoritmus
- Kényszerezett LAMBDA eljárás
- Validációs és UAV-s mérések bemutatása
- Jövőbeli tervek
 - Szenzorfúzió inerciális szenzorokkal
 - Validáció nagy pontosságú eszközökkel

Köszönöm a figyelmet!