

2020 PETRINJA EARTHQUAKE SEQUENCE: 2.5 DEFORMATION FIELD RECONSTRUCTION

GEOSES PROJECT: INSAR STATUS REPORT

Presenter: Balint Magyar^{[1][2]}

[1] Lechner Nonprofit Ltd. - Satellite Geodetic Observatory [2] Budapest University of Technology and Economics – Faculty of Civil Engineering – Department of Geodesy and Surveying

In: [2], Rédey Seminar 2021.05.12. 12.15 CET MS Teams

Rédey Seminar (2021.05.12) - 2020 Petrinja Earthquake Sequence: 2.5 Deformation Field Reconstruction and GeoSES Project: InSAR status report, presented by Balint Magyar

CONTENT

INSAR BASICS

Concepts and Applications

Advantages

- Submillimeter accuracy
- Various Ground-Range Resolution

Vavelength (λ), cm	Frequency (ν), GH _z (10 ⁹ cycles · sec ⁻¹)
0.8 to 1.1	40.0 to 26.5
1.1 to 1.7	26.5 to 18.0
1.7 to 2.4	18.0 to 12.5
2.4 to 3.8	12.5 to 8.0
3.8 to 7.5	8.0 to 4.0
7.5 to 15.0	4.0 to 2.0
15.0 to 30.0	2.0 to 1.0
30.0 to 100.0	1.0 to 0.3

$$\Delta arphi = egin{array}{c} 4\pi \ \lambda \ \Delta D_0 + rac{4\pi}{\lambda} \ rac{HB_{\perp}}{R\sin heta} + rac{4\pi}{\lambda} B_{//} + \Delta arphi_{atm} + + \Delta arphi_{pn} + 2n\pi \end{array}$$

- Weather and day/night independent

Excellent tool to perform Earth Observation (EO) / Surface deformation monitoring

SAR EO missions

Accessibility

- Commercional vs. Free-access
- On-demand vs. request vs open API

Characteristics

- Frequency
- Ground range resolution (~2 cm ... 100 m)
- Revisiting time (standalone \rightarrow constellation)

Characteristics

- Environmental monitoring
- Emergency observation
- Infrastructure/Industry/Defense

Recent study utilizes Sentinel-1AB IW mode data

Rédey Seminar (2021.05.12) - 2020 Petrinja Earthquake Sequence: 2.5 Deformation Field Reconstruction and GeoSES Project: InSAR status report, presented by Balint Magyar

5

Input data and management

SAR Level-1 SLC products

- Interferometric researches requires SLC products
- Copernicus Schihub (archive data on request)
- Alaska Satellite Facility (ASF) quick access

Auxiliary data

- Digital Elevation Model (DEM) 1 arcsec
- Precise orbit data
- Ground Control Points, AOI metadata

Softwares

- GAMMA Remote Sensing (all modules)
- ANACONDA + required packages
- PC: Ubuntu 18.04, SERVER: DEBIAN 10

GAMMA REMOTE SENSING ANACONDA.

2020 PETRINJA EARTHQUAKE SEQUENCE Balint Magyar

Corresponding manuscript submitted to Acta Geodetica et Geophysica (2021-01-20), peer-review is in progress.

Petrinja Earthquake Sequence 2020

Started in 2020-12 and lasted Q1 of 2021, max Mw > Mw 6 in 2020-12

Rédey Seminar (2021.05.12) - 2020 Petrinja Earthquake Sequence: 2.5 Deformation Field Reconstruction and GeoSES Project: InSAR status report, presented by Balint Magyar

Significant human and economical losses.

Geological background

Phase Unwrapping strategy

8.

- Normalized complex differential interferogram (wrapped)
- Goldstein-Werner filter (ADF kernel: 128 rng px)

9/a

- Fast-spatial filetered (FSPF kernel: 25 rng px) \rightarrow noise supression
- Unwrapped filtered differential phase obtained via MCF approach

9/b - 9/c

- Obtained residual phases (wrapped)
- Unwrapped residual phases, indicating non-modeled def. and noise

9/d - 10.

- Deriving true unwrapped differential phases (!), scale to LOS def.
- Compensate effect of Spatial Reference Point (SRP)

NOTE: motion away(!) from the radar is positive (blue [10])

Line-of-sight (LOS) results

A146.20201224_20201230

- Positive LOS deformation pattern in Petrinja and along River Kupa - Negative LOS displacements can be identified n the mountainous area between Slana and Gora

D124.20201223_20210104

- Slight positive LOS displacements can be identified near the valley and estuary of River Glina (Glinska Poljana and Slana)

- Negative LOS deformation pattern detected in the town of Petrinja.

Quasi E-W and U-D deformation components

Evaluation of 3D deformation field Underdetermined

GEOSES PROJECT: STATUS REPORT

Balint Magyar, Roland Horvath, Sandor Toth, Istvan Hajdu, **Ambrus Kenyeres**

GeoSES Objectives

Dedication

- ENI Cross-border Cooperation Programme 2014-2021
- Extension of the operational Space Emergency System

Partners

- Hungary: Self Government of SZSZB County / BME (+LTK)
- Slovakia (UPJS), Romania (UTC-N), Ukraine (UZHNU lead)

Specified objectives

- Monitoring natural and anthropogenic geo-processes
- Integration innovative and advanced techniques, including EO

Personal roles

- InSAR processing (AOIs, preliminary, core region)
- Scientific publication in related topics

Period extended due to Covid-19

-100

Rédey Seminar (2021.05.12) - 2020 Petrinja Earthquake Sequence: 2.5 Deformation Field Reconstruction and GeoSES Project: InSAR status report, presented by Balint Magyar

- Model refinement (phase comps.) - Model parameter optimization (lef) - Determine refined phase components

PDIFF

 $\{O\}$

OPTIMIZE

oOoU

- Read inputs to PSCs
- Estimate baselines
- Form differential interferometric point stacks
- Perform spatial and temporal unwrapping
- Initial estimation of orbit, athmosheric, height-dependent and residual phase component
- Initial mask conditions

Line-of-sight results 1.

Line-of-sight results 2.

OUTLOOK

Ongoing researches

Workflow development

- Purpose-specific GAMMA RS workflow development
- Automated workflows (ML + CV)

Technology transfer

- Integrate and dissemniate the most up-to-date technologies/approaches in recent workflows

Projects

- HUSKROUA/GEOSES
- EGMS, EPND, FIR (former),

Technology and know-how transfer between LTK^[1] and BME^[2]

Event-specific InSAR processing

- Coseismic deformation monitoring (ie.: Ridgecrest, Petrinja)
- Testing different techniques to retriev 3D ENU def. (AZPO)

Large scale InSAR processing

- Regional and multi-year stack processing, SBAS/PS
- Corresponding wf. Development and automation

Publication

- Scientific publications and consultancies
- Educational presentations

PhD Topic

Geodetic interpretation and implementation of the Hungarian Ground Motion Service based on Sentinel-1 TOPS SAR data

Nationwide, full-resolution InSAR (PSI/SBAS) processing

- Processing shall be carried out via the most up-to-date techniques, and the end-products shall be consistent with the EGMS

Geodetic and Geophysical interpretation

- Investigating the representative neotectonic processes of the Carpathian Basin and integrating the latest advances of the Hungarian Geodynamic GPS Network. Identifying the background deformation trends with tools of mathematical geosciences,

Objectives

- LTK-BME service build-up in the frame of the Co-operative Doctoral Program of the Ministry for Innovation and Technology

- using the available Sentinel-1 AB acquisition over Hungary (2014-2021), designing and implementing the optimal processing chain

- Different benchmarks regarding the applicability of the technology and the derived HGMS products, regarding the geodetic/geophysical interpretation

Acknowledgment

Prepared with the professional support of the Doctoral Student Scholarship Program of the Co-operative Doctoral Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund.

This research was co-financed by the HUSKROUA ENI CBC 2014-2020 Programme and it directly linked to the HUSKROUA/1702/8.1/0065 GeoSES project.

Thank you for the research related consultancies for Lajos Völgyesi^[2], Szabolcs Rózsa^[2] and Ambrus Kenyeres^[1]

És Innovációs Hivatai

Discussion: Q&A

24

Thank you for your attention!

Contacts

Balint Magyar

00 36 27 200 802

balint.magyar@lechnerkozpont.hu

www.sgo-penc.hu

25